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CHAPTER I

INTRODUCTION

In designing some systems, the designer should be able to charact-

erize the penetration of electromagnetic pulses CEMP) or lightning

signals through apertures of general shapes as well as quantify the

effects of the coupled energy on transmission lines located in the

vicinity of the aperture.

Apertures that are of concern to the designer are usually electro-

magnetically small over the spectrum of the EMP, or lightning, and their

existence may be for some purpose, e.g., windows, open access holes, or

they may be unintentional as in the case of cracks around doors or

plates covering access ports or poor electrical seams [1]. Small in

the sense of electromagnetic penetration implies that the maximum

dimension of the aperture is small compared with the wavelength of the

time-harmonic electromagnetic field. The analysis of the coupling

(penetration) problem has been investigated by a large number of people

since 1897. The first scientist to propose a solution was Lord

Rayleigh 12,3], whose solution was expressed as an ascending power

211
series of the wavenumber kC--t where X is the wavelength. Bethe [41

presented the results for the leading terms in the Rayleigh method by

using a scalar potential function approach. Bouwkamp [51 used a set of

coupled, integro-differential equations to solve the problem. Recently,

some have used an integral equation approach to tackle the problem.

Notable among them are Butler and Umashankar [6],[7].
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The coupling of the energy from an incident electromagnetic wave

to a transmission line located behind an aperture-perforated conducting

screen has been investigated by many engineers and physicists in the

past decade. Kajfez [8] has computed the coupled energy by the use of

equivalent electric and magnetic dipole moments. He has derived the

equivalent sources of a transmission line model by using both mode-

matching and reciprocity techniques.

Butler and Umashankar 19] have approached the problem numerically

by the method of moments, and have formulated integro-differential

equations for a finite-length wire with arbitrary orientation behind an

arbitrarily shaped aperture. They have also taken into consideration

the scattered energy into the aperture by the wire after wire

excitation. Lee and Yang J10] have solved the problem using transform

techniques, and have obtained the same equivalent sources as Kajfez [8].

In addition they have determined the effects of a wire being very close

So the aperture. Davis 1i] has developed a model using a method

spatially equivalent to Lee and Yang [10] method. He has also come up

with a capacitive term in his model which is not in Lee and Yang. The

importance of the capacitance occurs when the wire is close to the

aperture causing a capacitive discharge of the aperture region by

currents on the wire.

Davis (11] has also found a method for bounding the maximum voltage

and current levels at terminations of a wire behind an aperture. In his

analysis, he has approached the problem both in the frequency and time

domain.
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This report extends the bounding problem of a single wire to the

problem of obtaining an upper bound for the computation of the voltages

and currents at terminations of multiconductor transmission lines (MTL)

located behind an aperture-perforated conducting screen. The computa-

tions are carried out in both frequency and time domains. There are

several stages that lead to the final results.

In Chapter II, the electromagnetic field coupling through small

apertures is discussed. This is then extended in Chapter III to the

excitation of a MTL where a model is presented in terms of external and

internal sources which in turn create traveling waves on the MTL. These

waves transfer the coupled energy to the terminations. The available

energy found at the terminations is translated to voltages and currents

by impedance transformations. Finally, the bounds on the voltages and

currents are obtained in Chapters IV and V using vector norms and

associated matrix norms. The discussion is closed with the presentation

of comprehensive examples which elaborate on the use of the techniques

to find upperbounds on the signal levels in both the frequency and time

domain.



CHAPTER II

ELECTROMAGNETIC FIELD COUPLING THROUGH SMALL

APERTURE IN A CONDUCTING SCREEN

In this chapter the equivalent electric and magnetic dipoles

representation of an aperture is illustrated and the basic formulas

are given for this problem. The presentation is tutorial and the

scope is limited to the discussion of techniques which may be en-

countered in application. The development follows the procedures

of Butler [133.

Ideally, the problem will be discussed for a small aperture in

an infinite planar screen. Of course, in practical problems, one

never can encounter an infinite or totally flat screen. However, if

the following conditions are satisfied, then one can replace the

real world problem with an ideal one:

1. The minimum distance across the surface of the screen

should be large relative to the wavelength in the medium.

2. The minimum radius of the curvature of the screen should

be large compared with the wavelenght.

3. The point of observation should be close to the surface

of the screen relative to the minimum distance across the

screen.

4. The point of observation should not be close to the outer

edge of the screen.

5. The edges of the aperture should not be close to the edges

of the screen.
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In general, the problem of concern is shown in Figure (1), where

one sees an infinite conducting screen with an aperture (A) cut in

it. The screen is extremely thin and separates the space into two

parts, each characterized by 4 (medium permeability) and e (medium

permittivity) where e can be complex to account for a lossy medium.

On each side of the screen, there are electric and magnetic sources

J and M which are known impressed currents, and give rise to the

excitation of the aperture.

One can show [14] that the diffracted field by a small aperture

can be represented approximately by radiation from equivalent elec-

tric and magnetic dipoles. Figures (2) and (3) depict the idea of

electric and magnetic dipole representation for an aperture. Note

that in both cases the equivalent dipoles radiate in the presence

of screen when aperture is completely closed. Also, observe that

the electric dipole is in the same direction of incident electric

field, whereas the magnetic dipole is in opposite direction of the

incoming magnetic field.

The moments of these equivalent electric and magnetic dipoles

are related to the known exciting fields by special constants called

polarizabilities. (See Appendix A for details.) For the case of

Figure (1), one can replace the aperture (A) by equivalent dipoles,

and the moments of these dipoles can be related to tne polarizabi-

lities [11] as

* + Sc - ''p P e z + C a e E (r 0 E ro

e Z
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------ zAperture (A)

y

Z<O. z>O

?EC

Figure (1.Location Of sources with respect to
the aperture and the perfect electric
conductor (?EC).
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(a) (b, eru

PEC
PEC

(d) (e) (f)

Figure (2). Equivalent electric and magnetic dipole representation
of an aperture [13]: (a) electric field incident on
screen without aperture, (b) electric field incident
on screen with aperture, (c) equivalent electric
dipole on screen with closed aperture, (d) magnetic
field parallel to screen, (e) magnetic field and screen
with aperture, (f) equivalent magnetic dipole on screen.

-



Aperture

PEC

*Region (1) (z<O) (z>O) Region ('LI)

(a)

z
Pe p e

PEC

Region (I) Region (11)

(b)

Figure (3). Equivalent problem description: (a) incident
field on aperture, (b) equivalent dipole
moments replacing the aperture.
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-P - *-Sc--r -RSc*- (2

where is the moment of the equivalent electric dipole, ESc± is

called the short-circuit electric field (field which would exist if

there was no aperture), r is the point of evaluation located in

the aperture, and HSQ±(-r) is the short-circuit magnetic field.

The plus and minus signs represent the regions of the positive and

negative z respectively.

In addition, the constants ae and am are the electric and

magnetic po;arizabilities respectively; the latter is a dyad defined

as am = (a xx + (a, )yy. Thus Equation (2) can be written

in component from as

7 =_ x M7- a 1Jc_ -) ) - HSC(o (aPM, M,. [L o (a

FHSc-( -) -Scy (;°  (3b)my m, yyLy o Y 0 0

-+ + +
m"=pM, x p y

The equivalent dipoles are located at r on the screen with the
-

pair p- Pm placed on the positive side of the closed surface, and

Pe' PM placed on the negative side of the closed surface.
- +

As seen from Equation (1), Pe is perpendicular to the screen

surface while the direction of m * is determined by H c-(r 0) and

the shape of the aperture through am. Now, at the present stage,

one is able to calculate the field which passes through a hole in

a conducting surface as well as the field which scatters back.

Consider Figure (3) as depicted in the two parts. Note that the
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direction of two electric dipoles are opposite to each other in two

regions as are the direction of two magnetic dipoles.

Considering Figure (3b), one can write:

-(r) - (r) + r(-) + Em-(r) (4a)

H r R c(r) +H Ri(r) +H i,(r) (b

where ei() and H(r) are total electric and magnetic fields present

at point (r) in region II or I corresponding to the (+) and (-)

respectively. The (e) and (m) superscripts denote the fields of the

electric and magnetic dipoles in the presence of the plane con-

ductor, and the Sc denotes the short-circuit fields defined

previously.

The electric and magnetic fields at a point (r) due to electric

and magnetic dipoles located at (r) in a homogeneous space of

infinite extent are given by (13,15,16]

2ee
-7x (p x7G )  (a

S Sb

Re . - jw pex7G (5b)

Em = jw pmX7G (5c)

AM - - 7x(P_ x7G) (5d)
m

where G is the free space Green's Function defined as:

-Jklr - r 1

G(,r ) e (6)

0
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Substituting Equations (5) into (4) and using image theory, one

obtains:

R -CrG) E -(r) - Sx[pe x7G(r,r )
£ 0

+ 2jw 4.i p+x7G(r,r ) (7)
+ -7)

Cr)~( -i sc±(i) - 2j- +xVG(r,r)e-

- 2vx[p Mx7G(r,r )] (8)

If aperture reference is centered at the coordinate origin, then

r becomes a zero vector in the above equations. The above equa-

rions are valid in the distant region of the aperture (at least one

aperture dimension away).

The merit of the above approximations for computing fields de-

pends ontheelectrical size of the aperture, the distance of observa-

tion point from the aperture, and the choice of the coordinate

origin with respect to which the dipole moments are calculated.

The details of dipole approximation are given in Appendix (B).



CHAPTER III

ELECTROMAGNETIC EXCITATION OF MULTICONDUCTOR
TRANSMISSION LINES THROUGH AN APERTURE-PERFORATED

CONDUCTING SCREEN

In this chapter, the electromagnetic excitation of multiconductor

transmission lines (MTL) located behind an aperture-perforated conduct-

ing plane is developed using the procedures and method of Kalfez (12].

In order to do this development systematically, an aperture representa-

tion by dipoles is discussed which notationally is different from the

representation introduced in chapter II. The equivalent source models

are then derived using methods introduced by Kajfez [12].

Consider Figure C4) with a multiconductor transmission line

parallel to the aperture on the plane. There exists an electric field

in the aperture region which may be designated by EA (zx). The

aperture may then be replaced with the equivalent magnetic surface

current density given by

m (x,z) - E (x,z) x y
S A

where y is the normal unit vector into the region of interest (y > o).

For coupling to a MTL by a small aperture this magnetic current

distribution may be replaced by the two current dipoles just above

the closed aperture as shown in Figure (5). These two current

dipoles have amplitudes defined by

c M l (x,z) dxdz (9)

and

c jW (XX + zz) x J (x, z) dxdz. (10)
e

wil
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zy

p

x

Figure (4). A MTL parallel to a plane with aperture (A).

77

.00

Figure (5). Aperture is replaced by equivalent current dipoles.
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The derivation of Equations (9) and (10) can be found in Appendix (B).

The dipole moments p and p as introduced in Chapter II are also
Pe m

proportional to the above weighted integrals of the equivalent surface

magnetic current ii]. From this proportionality, we may relate the

current dipole amplitudes and dipole moments for ej~t by

and

e m

The concept of polarizability (Chapter II) can be invoked here to

Figures (6a) and 6(b), for the case of coupling to quasi-TEM (Transverse

Electromagnetic) waves, only the y component of E and the x component

of H are of interest. The resultant expressions are given by
-'-0 So- So+

S-jwmxx(Hx - Hc )I x (13)* 1m mx ,c x x

; ^So- So+ (14
c = CeyY =jWe(Ey - E )y. (14)

ye  y

Having introduced the preliminary notation, it is possible now to

obtain equivalent sources for a MTL behind an aperture-perforated

screen. Figure (5) may be redrawn for a different perspective as

shown in Figure (7). Using the concept of traveling waves introduced

in Appendices (D) and (E), the distribution of the electric and magnecic

fields for the ith mode on the MTL traveling in (+z) direction are

(X,,Z - ei xyS i e i(x,)

i-.(x,y,Z) a i e-J i h i(x,V) .( 6
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y

Z A 
x

z

Figure (6a). Plane (p) with aperture (A).

y

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ H 1 S c -

Figure (6b). Aperture replaced by a metalic lid
and the associated curr.ent dipoles.
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y

x

zw

4 In

c I

C Y

Aperture

Figure (7). Aperture replaced by a metalic
lid and associated current
dipoles appropriately located.
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where ei (x,y) and hix,y) are the power normalized modal fields

over the cross section of the MTL. As depicted in Figure (7), it will

be assumed that there are two infinitesimally spaced planes, denoted

by (R) and (L), at each side of the aperture junction. The equivalent

source model of MTL coupling will be established between these planes.

According to Appendix (F), the pair c and c excite the ith
Mx ey

mode traveling in (+z) direction as

a (c h (x O) - c e lNM C(17)
si 2 mx xi e Vc

where a is the source of a traveling mode in (+z) direction. The
sii

quantity h x (x0, 0) is the (x) component of the ith modal magnetic-field

distribution evaluated at the point (x - x0 ) and (y - 0). Siilarly

e Cx,0) is the y-component of the normalized electric modal field.
yio

A traveling wave source propagating in the (-z) direction, due to the

pair is

bs - T- (ch (x0 ,0) + ceye (x0,0)]. (.8)

Figure (8) shows a., and b si sources which are convenient for analysis

using scattering coefficients. Using the Dirac notation of Appendix

(C), one may define the vector las> and 1b > as
a 1 s

a slb

as2 bs2
a> and lb > (19)

a abLsNJ sNJ
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L b lasl

Figure (8). Traveling wave sources in (+z)
and (-z) direction for each mode [12].
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Define two new vectors :aR> and ;b > as

aR> - aL> + a> (20a)

bL> b IbR> + Ibs> (20b)

where faR> is the total traveling wave coming out of R (right hand

reference plane) which is sum of a s> and the wave vector incoming to
L (left hand reference plane). The planes R and L are shown in Figure

(8). Similarly IbL> is the total traveling wave coming out of L which

is sum of lb > and the wave vector incoming to the R.
S

The equivalent circuit in terms of voltages and currents can be

obtained by matrix algebra. Consider the model of voltage and current

sources shown in Figure (9). The Kirchhoff laws require that

IVR> - IVL> + IVs> (21a)

RIR> - IL > + Its> (21b)

Use equation (E3) from Appendix (E) to convert the scattering repres-

entation to a voltage wave representation

IVs>- M(IaR> - !aL>) + M (IbR> - bL>)

where M is a matrix whose columns are voltage eigenvectors. Substi-

cuting from (20a) and (20b), the above equation can be written as

IV5> - M(as> - bs>) (22)

Invoking equations (17) and (18), one can write the components of

( a > - lb >) as
5 5

(ai b .)=c h ('c ,3)
si si Mx X
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L R

LII

*sNV

I s sl

Figure (9). Voltage and current source representation
for each mode [121.
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This equation (22) can be written as

x(XoP°;

IV > L (23)
h xN(xo,9)

Similarly using equation (E4), (17), and (18), one can write the

equation for II > as

I eyl(Xo,0)1

C11 > LCjO, (24)
eyN(X0 ,0

For definitions and derivations of and whose columns are current

and voltage eigenvectors, respectively,refer to Appendix (D). Note

that in the above derivations, the energy stored in the aperture

junction was neglected, therefore the Figures (8) and (9) represent

the zeroth-order approximation.

The first-order equivalent circuit is now delivered for the small

aperture with a MTL behind it. Consider Figure (7) again with the

modification shown in Figure (10) with no incident wave coming from

right. Using equation (13) and (14) and noting that the external

field (or Sc ) is zero, one can write

C= a+jI a Hsc+ (25a)

c M -jE Ot Esc+ (25b)

ey e y

Decomposing electric and magnetic fields into their modal distributions,

the j-th mode for each field is
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a* a

ey

b b> -**~--,IbR> 0

L R

Figure (10). Incident and reflected waves on Mh
with current dipoles on the closed-
aperture junction £121.
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HS - a L hxj (XoO) (26a)

xj

Esc+ (x0 20) (26b)yj , 'Li eyj

where aLj is the amplitude of the normalized electric or magnetic

field. In a similar fashion the J-oh component of the amplitude of

the current dipole moments are

cmxj M jwu am hxj aLj (27a)

Cey j W-J ae eyj a L (27b)

If these moments are summed over all possible modes, then

N
c J m .~ xj aLj(2a

N
Cey- jw e ae Z eY aL j  (28b)

According to equations (17) and (18), the following can be written for

the ith mode of the wave in (+z) direction

1

aT = I[cmx hxi - Cey eyi] + (aL) (29a)
= +_iy i  (29b)i Li: - .[Cru hxi eye.(2b

Now substituting (28a) and (28b) in the above equations one obtains:

1 N Na~-jii h Zhx a j a e e a
aR i[jw am hxi x aQ F e yi J j Y Lj aLi

(30a)

1 N N
L [jwia Z h a - sr a e Z e a . (30b)
Li m xi jl Lj e Vi j l Lj

Define two real, svmmetric matrices H and E as

1
[H]i " hx. h. (31a)

ij 2 --m i x
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e1 I (31b)[Eij 2 6 e yi eyj

Equations (30a) and (30b) can then be written in terms of E and H as

laR> - (I + J H + j E) laL> (32a)

b LE> - (-j j + j E) IaL> (32b)

where I is an identity matrix.

The signal flow graph of equations (32a) and (32b) is shown in

Figure (11) where ia > and lbs > represent the zeroth-order equivalent
s

* source models. One may define the transmission matrix T as

T- +j i + j E (32c)

4 and the reflection matrix R as

Ru-j H + jE (32d)

Then equations (32a) and (32b) can be written as:

- - T HaL1L>= L 
(32c)

Incorporating the same analysis for jbR>, one obtains the complete

source free signal flow expressions as

In the next chapter, this signal flow representation and the aperture

signal flow sources are combined as the basic model of aperture

coupling to a multiconductor transmission lines.
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I- + E)a

lb >

Figure (11). Signal flow graph of equations (32a) and (32b).



CHAPTER IV

BOUNDING VOLTAGE AND CURRENT
AT A TERMINATION OF THE

MULTICONDUCTOR TRANSMISSION LINES

In this chapter, the procedures for calculation of maximum voltage

and current at a termination of MTL over a small aperture excited by an

external electromagnetic pulse is formulated. Consider the aperture

representation to be as shown in Figure (12).

Figure (12) can be represented by the corresponding signal flow

graph in Figure (13). In Figure (13) T and R represent the trans-

mission and reflection matrices as derived in equations (32c) and (32d).

The quantities las > and lb > are the source representations as obtaineds s

in equations (17) and (18). The quantities r and 3 are termination

reflection matrices as computed in equations (E15) and (E17). Finally,

and ± are the propagation matrices whose elements are exponential

functions of (z) representing the phase or time delays as

Diag [e SLZ4, ., e 8 N 41(

Diag [e- il 3, ., j -JN z31]

where 8i is the phase constant for each mode. As shown in Figure (12)

the origin is taken to be the region of the aperture for computation

purposes. Thus, jaR(0)> and IbR(0)> represent the traveling waves

immediately to the right of the aperture and 1aL(0)> and Ib1(0)> denote

the traveling waves immediately to the left of the aperture.

One can deduce the following equations by method of signal flow

theory:

26
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a

z Z3

jC ey

Figure (12). Terminated MTL over an aperture.

Ilas

T

!R

R R -4

!L 2 R
[b s> I

Figure (13). Signal flow graph of Figure (12).



28

ja,(O)> - T IaL(O)> +R IbR(O)> + Jas> (34a)

p L (0)> -T lb R(0)> + R la L(O)> + lb> (34b)

Also at terminations r4 and r one can write-4 -3

IaR2) 4 ja() (35a)

I4 2 4) O jb~(O)>, (35b)

I bL(-ZJ) jb~ (36a)

=a(Z) 2Zj aLjO)>, (36b)

-: and

lbR(Z4) r ~z) (37a)

Substituting equations (35) and (36) in (37), one can conclude that

I bR(O)> = !R ja 4 (O)> (38a)

ia,() >-jL -3 -L IbL(>(3b

Having introduced equations (34) and (38), one can solve for IaR(0)>,

Ib R(0)>, Ia L(0)>, and IbL (0)>. For this first-order formulation,

bL(0)> can be shown to be

lb 0) -(( - R L-3~ - T(~ t 4 R) (T F )x

-lb -T R) !a >] (39a)

Similarly ia (0)> can be obtained as
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la,(O)> [(I R- _ r 1R) - TQ 1l f, 2Z' R)-' Oll

x [a s> + (l fl 2Zi -. R)-lb s >]. (39b)

For almost all practical problems of interest, one can neglect R

and assume T to be unity, meaning that there are negligible reflections

on the MTL due to the aperture. In fact, Kajfez [12] has shown that

the reflected amplitudes are approximately one percent (or less) of

the amplitudes of the incident modes. Therefore substituting R 0

and T - I into equations (39a) and (39b), one obtains the following

equations:

lbL(O)> - [I- R -r 3  -Ibs + - a> (40a)

IaR(0)> - -- - 3 ±L j f4 1t a> + 1 Ifbs>1 (40b)

The above two equations are the zeroth-order formulation.

Having derived lbL(0)> and !aR(0)> , one can use equations (36a)

and (36b) to solve for lbR(0)> and laL(0)> as

lb0)> - "j;' -l - IL -3 L1-l[Jas> + L 13 -L Iys>1 (41a)

laL(0)> ~-l ' 1 - D L4 2.R] ibs + IR1 R a> (41b)

Figure (14) represents the zeroth-order signal flow graph for the

terminated MTL over an aperture.

Having formulated simple expressions for !aR > and b one
and) IL(0), on

can calculate la(z)> and jb(z)> at any point on the line. Specifically

or voltage at (i,) termination, one obtains the following:
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Ii

lb
S

Figure (14). The zeroth-order signal flow graph.
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V(z)>- 4[Aa(z)> + Ib(z)>]

v(24)> - a(z4> + Ib(Y4>

However, Ia(Z4)> and Ib(Z4)> can be represented as follows from

* I Figure (14):

ja(Z4)> - J laR(O)> (42a)

Ib(z,)> - 14 -R aR(O)> (42b)

Therefore,

1v4> v(Z 4 )> - (C_ + 14 IaR(O)> (43a)

Substituting (40b) into (43a), one obtains

Iv4 > -M N 1  + E]( ) ( - tL r 3  1L - -- 4 x

(!a > + 1L r3 I Ibs>] (43b)

Using equation (E4 ) and substituting from (43a) one can also obtain

any expression for 114> as

,I 1+ 1 )> IV > (44)14> .i(4) AI[I - -41[(. + Z41- .lV4>4)

In order to find an upper bound for the voltage or current at a

termination, IV> and I > should be maximized in some mathematical

sense. The best mathematical procedure for bounding vectors or ma-

trices is the calculation of their norms. The norm of a vector or a

matrix is a single number which gives both a conceptual and mathematl-

can evaluation of the size of the vector (or matrix) in the same sense

that the modulus does for a complex number. The norm of a vector a>

is denoted by a> and satisfies the following relations '171:
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II la > I1 > 0 unless a >- 0

1! $'a> 1 I a 1 a>11 for a - complex scalar

lil a > +  Ib> II [ 11 [a > 11 +  I lb > 11

11 la >  - lb >  1 ; 11 la > 11 - 11 b  >  11

The p-norm of a vector is defined as
1

1 i1 la> lip- (_allp + 1a21 ' + la IP)p, p (45)

For the case of p t , this norm becomes

!I a> 11' MaXi~jmIla, 1 (46)

Similarly, the associated norm of a matrix A is denoted by I A Ii

and satisfies the following relations:

!I A 1 > o unless A - 0

I3A IS 1 1 A ll fo l - complex scalar

II A+B 1 i 11 + if B i (triangle inequality)

II A B < II A I II I .1

The norm of a matrix for special values of (p) is defined as

max

IA f -a (47a)

If A H 2 " ! ax<eigenvale AZA) (47b)
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where (t) denotes complex conjugate transpose. Before going further,

there is another identity which will be used, not proved in this

discussion, and is given by

S+I i A + A 2 + +A N 1 -I (48)

where A jj< 1.

Also, as noted from equations (45) and (46), the two-norm of a

vector is greater or equal to its corresponding infinity-norm since

!IxJI 2 + x2 12 +... I12xn2  > xi 12

Thus, the two norms satisfy the inequality

l Ix> 112> 11 lx> 11. - (49)

For passive terminations, which are the cases of interest, the two-

norm of the termination reflection matrix t satisfies

li !2 1. (50)

This is due to the fact that reflected power from a termination is

always less than or equal to incident power for physically realizable

systems. *
The following mathematical derivation illustrates the proof for

existence of equation (50). If la > is defined as a power wave vector

incident on a passive termination with reflection matrix 7, then the

power of the reflected waves ib > cannot be greater than the incident
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power:

<bib > < ala > for physically realizable systems

or

<bib> -< ajZrjra> 4 < ala> (51)

Similarly, for any eigenvector 1u1.> of matrix rtr with eigenvalue

*X one obtains

Ii

But according to equation (51)

Therefore

or

Particularly

or

v~a 1 (52)

The above equation is the definition of the two-norm of matrix r', and

thus

r ~ a.(53)

At this stage, one can start analyzing equation (43b) by taking the

infinity-norm of IV > as
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-1
. v4 II (I r4)[-L ,R4,i,, 4 La > _tb,>3l

Using the triangle inequality for norms and other relations as intro-

duced previously, the above equation is easily shown to be! -1
4 II jv4,> I1 II [II i +H4 I11121 IIRIIL 1it !-L .L ]t, tl.

ll tan> II+ -_ LI1 liraj 11111 t llb .

Invoking equations C48) and (43b), the above inequality can be

expressed as

jj I V4  > I1 I1_11 tI 1 .11 2 +1114 112 11 ...R112

I11 las> 112. 0 11, 12 )L3 12 I l b >211 lbs>1 (54)

Using equation (33), one obtains

I' L 11 -II = Il -1= . (55)2 2

Substituting equations (55) and (53) into equation (54), one has

(1 1-11 2 = 1)

11 I 4 1 . 1 MV I .2 11 Ia .> H + 11 lb S> j H 7
II 1v411 <[N[ Ilt 'a,>"2+ II 2b~l

- L-L - R 2
(56)

The norm in the denominator may be expanded as

II k~3~-L-R-431 2 11 2 2 L 2
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or by substitution

Ii Lr3242RELIR12z4 1

But in order to make the righthand side of equation (56) a finite

quantity, one has to mathematically introduce the practical losses

associated with each mode travelling on the MTL as

--iz -yNz]
Diag 

, • •

L i +i+ N8 (57)

where

a i is a decay constant for each mode.

Therefore by (.47b)
max 112 e-i4

(59)

1 II - (e -aiZ)
L 2 1

,4here (4) and (23) are right and left termination distances from the

aperture as depicted in Figure (12). The above equation can also be

written ds

1 2 e(60a)

- (alton) 3

S 2

'I AA
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Equation (56)_ may now be expressed as

1-_G~L 2 2

where

a R +2"&iminL4

-r +2 'imin"3

If a T is defined as the sum (a R + a L) then

a T So 
2a±mri(Z4 +Z3 2aim±ZT (60b)

thus

!,Ie 1V4> s11 12 1 a>2 + 11 b~,] (61)

The quantity a T may also be interpreted to include losses in the termi-

nation corresponding to non-unity bounds on the IL %> and to include

radiation loss both back through the aperture and in coupling to higher

order modes.

It is computationally advantageous to replace 11 K l.~ j with the two-norm,

which is consistent with

IV4> 11 1 ItjV4> i 2 (62)

This may be seen by determining the two-norm which by equation (D27)

and (D31) is

where the j'jIarethe ligenvalues of the MTL matrix L which isth
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inverse of induction matrix of the TL. Also using the triangle in-

equality, one obtains

Il Is> l 2 1 < [ Ilc= hx> 1 + 11- ev le >11 ]
2 2

and

1 IbS> 11 2; 4 11-cMlhx> 11 2 i ey 2

Since

c lh > II- l-c hx>
Mxx 2 2x

il-c ey > 112- Ic eyley> 112

equation (61) may be written as

>1 2 /max______ ( ) [II c xh > Hv+i I I >114 111v4> It < 2 max V+ >i:I mlx +
(1- e-aT) V -Xy y 2

(64)

Finally, since the vector IV> defines the voltage on a MTL with respect

to ground, the maximum voltage of interest, in other words the voltage

between any two lines, is bound by

IAVImax 4 211 IV4 > 11

Using the above inequality, equation (64) may be written as

4 max +1 e>i2

lavI a 4 1L) [ (-, [> 11 + I c le > ;1
max -T Xi Mxx 2 ey y 2(1 - e - T )

(65)

which is the desired upperbound.

Substituting for Cmx and c from equations (13) and (14), equation
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(65) can be expressed as;

4 w+ma ( "') p lc I H a >11 1 h > 1
bound 7  2

(66)

Having determined a maximuim bound on the termination voltage, one can

calculate a maximum bound on the termination current using equation

(43a) and C43b) to simply obtain

>il 2 14 ' (67)

11A>1
or vI l

max' 2 (68)
lI.lL

Invoking equations (D28) and (D32), one can calculate 1M1 2 in the

same way as 112 I 1 to obtain

IIM1 _- max(eigenvalue of ~ ax( Vj(69)

Therefore equation (68) can be written as:

II - lVmax .a(/v)(70)
max (Vi/xi
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or

(t2mx C7m C v. )inC (71)

Therefore by equations (66) and (71) one has a bound on both voltage

and current at a passive termination located at some distance from the

aperture. Although the above formulations all have been based on the

fact that the termination is to the right of the aperture at a distant

(24), equations (66) and (71) provide a general frequency domain upper

bound at any point on the MTL. It should be noted that the losses due

to the aperture or termination can be taken into account by modifying

1 T as previously suggested.

The next chapter transforms these results to transient domain, and

includes the important multiple reflection phenomenon.

?.'



CHAPTER V

TRANSIENT ANALYSIS

The previous discussions were based entirely on the frequency

domain analysis where each mode was treated as steady state sinusoidal

function of time. In this section the transient (time-domain) analysis

is considered together with. the multiple reflection phenomenon.

A quasi-TEM analysis of the MTL is discussed in Appendix (E). It is

assumed that this quasi-TEM waveform is non-dispersive, in other words

an arbitrary waveform is transmitted by each mode without distortion,

and the waveform at the distance (Z.4) is a replica of the transmitted

waveform delayed in time by ( - ) where vi is the velocity of the mode.
* Vi

Mathematically, this is expressed as

2.4
ali( 4,t) " ai(°ot-i ) (72)

The signal flow graph for the time domain is given in Figure (15)

where terminations are located at distances (Z.4) and (Z.3) to the right

and left of the aperture. If the 1 matrix of the previous chapter is

given by

'R" e 2SZ I (73)

then

I a,(-Z4 t) > a. i (o , It -.4) > (74)

where 44 
( 5

The above formulation implies that all the modes have the same velocity

41
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U)14

Figure (15). Time domain analysis of aperture excitation.
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and consequently the same phase constant. Therefore it takes T4 units

of time for all modes to impinge on the termination. On the other hand

if the 2matrix is

2 [ij e-JiZ4] 
(76)

then

laRC'4,tl> " [tRaCo,-Ti)]> (77)

where
z 4T _ (78)

i V.
2.

In this case, each mode has its own characteristic time constant (T.),

and the formulation is much more complicated. In the following

analysis, there are three major assumptions that should be kept in

mind: 1) The propagation matrices 2 and I are taken to be constant.

Mathematically, it is written as

(79)
!L e+JBZ3

where B is defined as

v

Also the variable (T) corresponding to the transit time from (-Z3) to

(+Z.) is defined as

Z3 + Z
S- C )

A V
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2) Terminations are assumed to be passive and resistive which implies

that the elements of termination matrices " and r are real and

constant; 3) The medium permittivity Ce) is taken to be that of free

space (e so that all the modes travel with speed of light (v-c).

The above three assumptions imply the worst case conditions for the

whole system in terms of the voltage built up at terminations as a

consequence of having the highest possible speed for each mode

traveling on the MTL. This directly relates to minimal mode attenua-

tion between successive multiple reflections. Also as implied in

Figure (15), the aperture transmission and reflection matrices are

assumed to be unity and zero as given by

(80)

This assumption simplifies the formulation and calculation of the pro-

blem and due to the very small effect of r and R for problems of

interest [12], it is a good approximation to the exact solution.

In Chapter IV, the termination voltage was calculated as

IV 4> - X11+ -4.? 0

In the time domain, .tIaR(0)> is replaced by a series of incident and

reflected waves constituting the multiple reflection phenomenon as

V4  >MV[(+X] {a (.t-r )> +r,,4Ia.(t-t, -2r)>

+ .. + (1r)n as(t- -n(27))>+ +43
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lbs Ct+T- 2T) > + :4 3 bs (t +T 4 - 2(2r)) >

+ ... + (--r3 4 )n- 3 5 t+ 4 -n(2 )> +"" } (81)

The above equation can be best understood by observing Figure (16).

At time (t),jasCt)> travels Cr 4) units of t±me to reach the right

termination. After being reflected by r, the wave travels (T) units

of time to reach the left termination, and again is reflected by ±3"

Finally, it travels CT) units of time to impinge on the right termina-

tion. This process continues indefinitely as

)n  a (t- 4 -nC231) >.

Similarly, one can deduce that the process for Ib (t)> takes the

form
r3: )nr bCt+ -n(2-,)) >

Equation (81) can now be simplified to

IV > _ (rr)na (t- -n(2-)) > +
n=O

s (4)n- 3lb (t + 4 -2(n+lr> (82)

n=O

Due to the losses of the aperture, the terminations, and the KTL, the

above equation may be modified to include such losses as

>= _jV[.+ 11 7 e-nas(t-r4-n(2-0))> +4 -L4 ~nzO -.-
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ba (t)>
s

Figure (16). Multiple reflection phenomenon.
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z e-n(r ),r lb Ct+ 2.n+l) T)>j (83)n-,0 3- -3 s 4 -

Pn-
where (e- n) takes into account the system loss for each time that a

wave travels twice the length of the MTL and passes over the aperture.

In order to simplify the computation of equation (83), one can use a

pole expansion method of the Singularity Expansion Method (SEM) r18].

This expansion may be written for simple poles of a general function

F(t) as

J m
F(t) Z f egj t u(t) (84)~j-l

where the s 's are simple poles of the transform of Ftc), and f 's are

residues due to each pole. Using the format of equation (84) in

equation (83), one can write
m

[as~t -r4 n (2-0)) >  a as (0) > esJ (t - r -4 2  u ( t -  4n(20))

jal

(85)

-u s -( >( e (t(+n- 2 (n+ l ) t)

3=1'' s  u(t +,r 4 - 2 (n+l)T)

(86)

where (s j) is the propagation constant for each external made in the

function expansion. If equations (85) and (86) are substituted in

equation (83), one obtains

m N s (t -n(2r)
M7 [v4- 4 1f a (0)> 7 es -  - T, - e -nIV> MV. rj =z !a s j  / e- eO

4-=1n;
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m M
I bsj CO) > z eS (t+ 4 

2( n+l)T)e- n]  (87)
J=l n-0

where, due to the unit step functions,

= 4
N- Integer 4 2--] (88a)

t + T 4 - 2T

M- Integer [ 2 (88b)

for N and M non-negative. If N or M is negative, the corresponding

series is deleted.

In order to obtain an upper bound on the voltage at the termination,

one should take the two-norm of equation (87). Using the matrix and

vector norm properties introduced previously along with the triangle

inequality, one obtains

1V4> 12 <l.U E1 j+ [11la11

e0 en2))o~ + (0) > 12

n-05  t ~ [~~s() 12

MeSj (t + T 4 2(n+l) T)e~ *P 1 (89)

If s , the propagation constant, is decomposed into its real and

imaginary part as

s - - +j
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then

Z eSJit 4  (2) < I e-J(t T4-n(2))e-n

n0 M-0

and

ii-0 n Q
Th eatii C-ni and n')~e

The quantities C-nj) and represent the decay and phase constants

respectively for each mode.

One can use the finite geometrical series to simplify the above

expressions as

Ne-nJ(t -4-n(2r))e-pn e 2NTe-pN"

n-0

ir- - (N+ ) (2njT - )
je (90)

-e- (2 nj 0) j -9

and

en- (t + 
4 2 (n + l )r) e- n =e-n (t + 4 -2r-2M) e-pM

n0O n-0i -e-  (91)( j -

1 _e-(2nJ__ __ ) (91)

Equations (90) and (91) hold only when

2nj T >o

or

2 i 7
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For the case when 2nT p ), one may obtain

Ne-i(t 4 n(2))e-n - N+1) e-nj(t T4) (92)

and

M eitr 2 n+l)e T+) ~ +T2T) (93)
ZMe-nJ (t + _r4 -2nlre-n C M+I) e-nJ (t + T4 -2)(3

n-0

At this stage, one can start computing a numerical upper bound on the

voltage at the termination.

The maximum value for both e-J t - - 2Nr) and e- J(t+ 4 -2r-2Mr) is
unity which occur approximately when CN) and (M) are replaced by their

respective values given in equations (83).

In order to find an upper bound for the remaining terms in equations

(90) and (91), one can set M equal to N and compute the values of N for

which the remaining terms are maximum. That is

F 1- e +) (2 li j T -
-oN [1-e z0w(94);"N e- (2T'j - -) " (

After taking the derivative and solving for N denoted by N', one ob-

tains 2n jT/ C)(
-' Zn 2jr/)-1

-(2njit - p)

The above value for N' maximizes the equation which can be verified by

showing that the second derivative is negative. Since N' must be

greater than or equal to zero for the correct solution, one must com-

pute (95) and replace N' with
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Nmax = max [O,N'] (96)

Substituting N ma in equations (90) and (91), one obtains

Ze -nj (- T4 n( 2 )) -on 1 p + 2n T
4n=0 =

2ni " (97a)

-(2nj -P)

and

2T~j T
Zn( )

enj (t + 4 2 (n+l) -) -on 2

{exP- l--i-I
0J

L '1

2n - ) (97b)

e ..2n -C P)fL l1-eJ

for N' greater than zero and unity otherwise. For the case when

(2j T p), equations (92) and (93) are used and the results can be

shown to be

1 )(;-1)
( )e ,

enJ (t C4 -n())e-Pn p (98)

n-0 I , P>I

The above results also hold for the summation over M.
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Equations (97a) and C97b) may be simplified notationally by defining a

new variable Y as

y - 2.T.

Hence, the above-mentioned equations, can be written as

e rj(t-T 4 n(2T))e-n < exp P +
n0 I L -

and similar simplified result holds for sumation over M. If (p) is

zero, the system has ideally no internal loss and the upper bound of

the voltage at the termination will be maximum. Thus the worst case

condition suggests no loss. Substituting zero for (p) in equation (99),

one obtains

N -nj (t - T4 - n(2T))e-on

S -nJ (t + T4 - 2 (n+l) -) ePn (l~-Y)

n-0

Finally, substituting equation (100) in equation (89), one obtains the

voltage upper bound as f- s()>121m s ( ) !, il i{ -

(l-e2 (io )

(101)
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With the simplifications of equations (53) and (63), equation (101)

becomes

lia~ (0i + >,, b> -i (-0 >
V4> I 2 X2-2nr (102)

(I-e )

As discussed in chapter IV , the maximum voltage between any two lines

is

av
max I4 2

SI (o)> II + jV2o]>

I 3"i

ma (1 -e )

One can use equation (70) to obtain an upper bound on the current as

. m a VImax 1 (104)1:: 2 m in (04)
max 2 Max(Zv) i(v L

i i

If lasJ(O)> and lbsJ(O)> are replaced by their equivalent express-

ions in Jhx> and ley> , then equation (103) becomes

In time domain, c and c can be expressed as

x y
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c [SC (t)] (106a)

and

ey= [y (t)] (106b)

where S

H xs C t ) = (lixSC)j~ eS~ (107a)

ju-

so- eS4 (t)sE (t = (E . s) f f. (107b)

Taking derivatives from equations (107a) and (107b), and substituting

in equations (106a) and (106b) respectively, equation (105) can be

written as

Xi 1ax (1-e -2 j T m, cc I bound I

h.> 1+ cebud Eysc IlIIIey >Li

(108)

for a lossless MTL.

Equations (108) and (104) suggest a computational method for upper

bound signal levels in time domain at a termination of MTL behind an

aperture-perforated conducting screen.

In the next chapter, the resultant equations will be used to com-

pute an upper bound signal level for a specific problem both in

frequency and time domains.



CHAPTER VI

COMPUTATIONS OF SIGNALS UPPER BOUNDS FOR A
PARALLEL-PLATE TWO-CONDUCTOR TRANSMISSION LINE

In this chapter, the results of previous discussions along with

Appendices are used to compute an upper bound for the voltage and the

current at a termination of a parallel-plate two-conductor transmission

line located behind a circular aperture. Hopefully, this example will

help the reader understand fully the concepts and the procedures used in

previous discussions in computations of upper bounds.

The four basic equations which fully describe upper bounds on the

voltage and the current in both time and frequency domains, as derived

in chapters IV and V, are

i r
• -- ~ H H c so-~ x +

1 - e- T  bound' 2

1sc- ley>jv (66)

lmaxV _.__ -  
(71)

2 max(,, )min (-v)

4j maxbd~ IHc Ihx> 11

elbdf jfev> 3 s~l
.ej.l. -2n.7

(108)

55
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- IAI __________(104)max xv mm v

i i

The parameters used in this particular problem are the same as the ones

introduced in an example by Kajfez [12] which facilitate comparison of

results.

There are a few concepts that should be mentioned before proceeding

to actual computations. By transmission line theory, the induction

matrix L is related to the induction coefficient matrix K' as

- 1 2K

where c is the speed of light in vacuum. The matrix K' describes the

capacitance relationships of the homogeneous 1M and is evaluated for

the system filled with a vacuum. This matrix depends only on the

geometry of the system. The quantities Xi's appearing in all the above-

mentioned formulas are the eigenvalues of the L1 matrix, and the viti
are the corresponding modal velocities related to the eigenvalues (-h2)

of the matrix (-2w LK) as

vi

where K is the same matrix as K' except that it is evaluated with the

true values of permittivity of the medium contained in the system.

The parallel-plate two-conductor transmission line is located

behind a circular aperture of diameter d 2 cm which is positioned at
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z - 0 as shown in Figure (17). The transmission line is terminated

by matrices 4 and Z3 representing passive terminations located

distances of 5m and 7m from the aperture respectively. The cross

section of the transmission line is shown in Figure (18). There are

three layers of dielectrics separating two strip conductors of width W.

The thickness of dielectrics are denoted by hi, h2, h3, and are assumed

to be much smaller than the width W.

The computations of both the sources and the induction matrix require

knowledge of the quasi-static modes on the MTL. In order to obtain the

electrostatic field, a unity potential is applied to conductor a, while

conductor b and the shield are held at zero potential. Then, the

normalized fields in three regions are

E " ay, E 0 , E3A 3- 'y (109)1'yA h 2A~3 a

Similarly, a unity potential may be applied to conductor b while conduc-

tor a and the shield are held at zero potential. Then, the normalized

fields in three regions are

0, ay(110)
12 B E2B h 2~ y ~ 3B 3a 10

Computation of the elements of the induction coefficient matrix K is

accomplished by integrating the electric flux through the closed surface

Sa around the conductor a as

Qa E. d3 (!lIla)

Sa
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(z0. z

Figure (17). Two-conductor transmission line behind an aperture.

h

_(a)

h33

r-H (b)
h

V2 c2

(d)

z

Figure (18). Cross section of two-conductor transmission line (121.
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or

e E A Ts + E ds (11ib)Qaf
S S
a a

Equation (lib) can be written as

Qa inKaa +Kb (iic)

where Kaa and K are the elements of K and depend only on the geometry

of the system. By equations C1ic), (lilb), and (109), the coefficient

K is
aa

w v

XX 7
wa E IA*ayd A aY

+ C3 (112)

W h 3

Similarly, the other induction coefficients are found as

Kb K - 3 (113)

ab ba h3 (4

Kbb c3+ 2j (114)

For this particular example, the following parameters are used to enable

comparison to the transient results of Kajfez (12]:

hl- 2cm

h = 2cm1c

h3 - icm
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W 10cm

L2r = 1.0
£2 1.0

e3 2.0

Substituting these parameters in equations (112), C113), and (114), one

obtains

K Kaa Kab 25

K Kbb -20 25

where (£) is the permittivity of vacuum. If all three dielectrics are

assumed to be air ( = 2 = 3= C0) then the induction coefficient

matrix, denoted by K', becomes

K'- ~ 13 I10

L 10 15

Thus L can be obtained as

L~ c K' f-15 -1071
---- U0 -10 15

where 0 is the permeability of vacuum. The corresponding eigenvalues

of L-  can be computed as

5

25
- O
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The eigenvalues C- 2 ) of the matrix B K(- LK) and the correspond-

ing eigenvectors can be obtained as

2I = w2I 1

v2  2 7

1'2 L1

2 9 )2  >
h2 3 2

and the corresponding modal velocities are computed using the relation

v~u as

1

-c

V2  3

where c is the speed of light in vacuum.

To determine the sources) the previous results must be extended to

compute the aperture modal function iey>and Jx>

By equation (D31), the matrix MV which transforms a power wave to its

corresponding voltage value is obtained by computing the voltage eigen-

vectors I~i> given by equation (D27). Substituting the particular

values of X., v., and I >in equations (D27) and (D31) one obtains

O al Oa2 F6.14 2.37]

Hbl ~ b2I 6.14 -2.37

L Li

Similarly, by equations (D29) and (D32), one can compute the matrix

MIT which transforms a power wave to i-ts corresponding current value as
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m 10.0814 0.2108
al a2 I

L bl b2 0.0814 -0.2108j

By definition, the electric field of the nth mode traveling in

positive Czj direction is

x,y,z) =a e ein (115)a n n

where en is normalized for unit power.

By selecting a = 1, one has

E n(x,y,O) - en(x,y)

The corresponding voltage vector for (a. 1) and (b - 0) is obtained

from equation (E3) as

1Vna> . j n >=F anI

anj

If the potentials on the two conductors are selected equal to an and

b as shown in Figure (19), then the modal function e^ of the nth mode

can be obtained as

(E ) +~ (E -Ob (116)eyn " an (2A y + bn (-2By h2 (1)

Extending this result to both modes (n 1,2), one obtains

- 1

e > bl



63

(0) w

h 14y

12 h2 /

_______ teyn _ _

(0)

Figure (19). Computation of the modal electric field ey [121.
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which gives

-307.0 
+118.5

for the problem of interest.

The modal function 7 (xy) is equal to the magnetic field it(xy,0)
n n

inside the transmission line when the current on conductor (a) and (b)

are respectively selected to be 1P and 'p as shown in Figure (20).

The currents are assumed to be uniformly distributed over the con-

ductor surfaces. An elementary computation using Ampere's law and

magnetic flux conservation gives the following:

an h1  Ybn(hl+h 3) (1
xn W(h +h 2 +h3)

where '$1 and Tp, are obtained from the matrix M_ which transforms a

power wave to its corresponding current value. The vector Ihx > for

the problem of interest becomes

F0.81411hux> M -

1-0.421j

The external short circuit fields are needed to complete the

bounding process. For an incident wave with transverse magnetic (T1)

polarization as shown in Figure (21), one has

Sc- sc- -2E

E -2iE0

E 2E sino, Hx sin (113)
y 0 0

The incident parameters chosen by Kajfez [12] are
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A w

1al

'bl

hh

A x

-IZ

Figure (20). Compucation of the modal magnetic field h (121.

y

z

Figure (21). Transverse Magnetic (TM) polarization
incident on the aperture [121.
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U100 KV/m, 0

In order to obtain a numerical value for equation (66) one must

compute the norms and absolute values for the following quantities:

IIh.> 12- (.1) 0412-0.9164 A/rn

le,> j - (307)2 + (118.5)2 - 329.1 V/rn

- 0 sina 132.6 A/m
x ri0

E 2E~sine 141.4 K/
d3

am -"  -. ) = 1.333 x 10

a ) " 6.666x 10 - 7

Assuming (a)n ldB/1Oft , one obtains
I e -~~~ min)rin )

(a~i(lOOft)
20 loglO =- 1

or

(a i) minI 3. 777 x 10

and by equation (60b), aT becomes

aT a 90. 652 x 10 - 3

Now, one can substitute all the available data into equations (66) and

(71) to obtain
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JAVImax < (w) (191.4 x 10- 9) V

II < (w) (3.287 x 10- 9) A
max

If the dielectric is replaced by a vacuum and the incident angle

is set (e = 900, a = 900) for maximum short circuit fields, the upper

bounds are

JAVI m (w)(4.76 x 10- ) V

and

I Ia (w)(7.06 x 10- ) AIImax

This forms a useful frequency-domain bound for the problem presented with

a voltage less than 10 Volts for frequencies below 3.3 MHz.

For comparison, this problem has been solved exactly for open-

circuit terminations on the MTL. For such a case

r= r = I
-- 3 --4 -

Determining the las> and bs> of equations (43b) from (13), (14), (17)

and (18), the results were computed and are plotted in Fig. 22 along

with the bound. A modified bound is also plotted which represents the

actual bound of the particular problem. The difference in bounds is

4.1 which seems slightly unreasonable until the bounding approach is

examined. A factor of two arises in the bound to account for a dif-

ferential mode which does not occur in the case considered. The tri-

angle inequality used in the bound of las> and Ibs> contributes another

1.5. The product of the 2-norms of MV and le > versus the =-norm of

yy(_ Iey>) contributes a 1.29 factor. A small contribution also occurs due

to some of the neglected loss terms. In light of these observations, the

resultant bound is very reasonable.
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Bound

2-

Modified Bound

f (MHz)

Figure 22. Open-circuit example.
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For the Transient Analysis, the external incident fields given by

equation (118) should be modified in order to take into account the

time variations as

sc- sc-(
E (t) 2EF(t)sin6, H xt) -F(sin (119)
y 0no

where for EMP a suitable function is

-t -6t (120)
F(t) e - e (

Kajfez's date [12] are

6 -1= 3 x 10 sec

8 = 108 sec- I

Equation (120) is in the format of equation (84) with If.I = l(j-1,2),

22
nI = n, and n2  = . Using equations (108) and (104) for the vacuum

filled lines with Kaifez's data, one obtains

[AVImax < (1.8959) V

I I max < (0.0281) A

where IH sc- and IE sc-1 in equation (108) correspond to the ex-

p s x y
pressions of equation (119) without the F(t).
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Kajfez [12] has obtained a result for this problem with moderately

mismatched terminations. He has obtained a maximum voltage peak of

about (0.27) volts for conductor (a) and (0.25) volts for conductor (b).

Although at first glance, it may appear that the result obtained in

this discussion (1.9 volts) is not reasonable at almost ten times that

of Kajfez, it should be noted that for upperbound computations it is in

reasonable agreement. The reason being that Kajfez has not computed

worst case conditions and thus in solving the problem he has not de-

viated from the actual parameters regarding the termination. With his

moderate mismatch, multiple reflection phenomenon have not affected

the bound due to the loss. Also, in computation of various variables,

he has used the true permittivity of the system. In this discussion,

the use of multiple reflection phenomenon has had a negligible effect on

the bound. At several stages of computation, other matrix norm in-

equalities such as

and

have been used extensively. These inequalities have contributed twice

or more to the exact values, and therefore 1AVjmax may be reasonably as

small as

IAVImax 0.95 volts

In the transient analysis, the velocity of all the modes have been

assumed to be the velocity of light in a vacuum which is actually larger

than the true velocities of the modes in their respective media. In

addition, the upperbound has had a factor of two to account for the



71

possible potential difference between wires and not just to ground.

Taking all these factors into account, one can readily observe that the

(1.9) volts for a bound on the voltage is indeed in reasonable agree-

ment with Kajfez's calculations.

Hi



CHAPTER VII

UPPER SIGNAL BOUNDS FOR

ADDITIONAL CANONICAL PROBLEMS

A more complete understanding of the bounding procedures will be

presented in this chapter in connection with the upper bounds of three

additional canonical problems. These problems are two parallel thin

S- qwires behind an aperture, parallel thin and thick wires behind an

aperture, and a wire between an aperture-perforated parallel-plate

transmission line. The latter two represent a wire at the surface of

a cable bundle and a wire between bulkheads respectively.

As in the previous chapter, we use the bounds of equations (66),

(71), (108), or (104) as appropriate. Let us first concentrate on the

voltage represented by equation (66) below:

4w.
a e - T max(-- ) [P IOma IHSC I (hx> I- bound x 2

+ e Jae IE sc 1 le >11 ] (66)
bound 2

Equation (66) was actually obtained from an upper bound on the power

along the transmission line. The square root is the upper bound on the

transformation from power waves to voltage waves. The factor of four

accounts for the wire to wire voltage rather than just the wire to

ground voltage in addition to the total termination voltage, which can

U.T
not exceed twice the incident voltage wave. The quantity (1- )

accounts for the total multiple reflections with aT representing the

loss per round-trip transit. The remaining terms represent the

traveling wave sources due to the aperture. The w results from a time-

72
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derivative in the aperture current dipole moment representation, with

a and a the required components of the dyadic aperture polarizabilit-

ies. TheJ h > andI e > vectors are associated with the multiconduct-x y

or transmission line (MTL) fields at the aperture as required for the

source determination using the reciprocity theorem.

For a particular problem as shown in Figure 12 of Chapter IV the

radian frequency w is assumed known and the loss aT must be estimated.

This loss is due to power absorbed in the terminations, or line, and

radiated in other neglected modes or back through the aperture. For

simplicity, we shall set aT equal to only the line loss which will be

estimated at ldB/10Oft., typical of standard transmission lines in the

high frequency (HF) range.

In order to facilitate the field calculations associated with the

sources, the medium is assumed to be homogeneous. In general, we shall

use the parameters of a vacuum, po and eo9 which provide a maximum

value of v i to be 3 x 108 m/s. The bounds on the polarizabilities are

obtained from the geometry of the aperture. In general, these bounds

may be determined from the polarizabilities of an ellipse which cir-

cumscribes the aperture. The H sc- and E sc- are obtained from the
x y

exterior problem which is assumed to have been solved.

The remaining quantities A1, Ihx >' and ley > are determined from

the geometry of the MTL. The equations defining the MTL are given in

Appendix D as

d IV> = -j4LI> (DI)
dz
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and

d I I>= -juKj V> (D2)
dz

-1The parameters A. are the eigenvalues of L If the medium is a

vacuum as assumed, these are simply the eigenvalues of c2K where c is

* the speed of light 3 X 08 0m/s. The induction coefficient matrix K

Amay be determined by either solving n boundary value problems using

Laplace's equation for the n wires or determining the potentials due

to charge distributions on the wires. The latter has been used where

a line charge Q. has been assumed and the associated potentials been
1

determined. These results are used to determine the matrix K from the

vector equation

_V > = P Q >  (12)

with the elements of I V > and IQ > associated with the corresponding

wires. The matrix K is the inverse of P from which the A. may be found.
1

In determining P, the electric field in the medium is required

which is also used to explicitly determine E at the aperture for each
Y

Qi" The corresponding magnetic field component Hx may simply be

obtained as (-E y/no ), where n is the characteristic impedance of a

vacuum given by 120T.

To complete the problem, modes on the MTL must be defined. In

general, the modes are associated with the eigenfunctions of (-u2 LK).

However, in a homogeneous medium L = c 2K and we need the eigen-
2

vectors of (- vI) where I is the identity matrix. In this case, we

are free to choose the eigenvectors. It is standard to choose one of

the voltage eigenvectors for an n-wire line as

4
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1lb 1  = [} ,(122)

which corresponds to the bulk mode, and the other nodes lbi > as ortho-

normal differential nodes. The corresponding charge distributions

IQi > are given by

I Qi > = K I bi > (123)

which results in aperture field Eyi for each IQi 
> . The components of

I e > andl h > are normalized for unit power flow. Thusy x

V2-E
eE (124)

yi ' /c <bijKlbI >

to give

eyl

e > (125)
y

yn

and

h > - > (126)x no

With these vectors and equation (66), we are prepared to determine an

upper bound on the frequency domain voltage and current.

Alternately, the I bi> may be chosen as the unit normalized eigen-

vectors of L- 1, then (123) becomes

xi
i - Xi4 bi> (127)

c
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The denominator of (124) similarly becomes VAi/v Since E . is pro-
X.

portional to --, (124) can be simplified toc2
'

e = E (128)

yi c c

where the prime denotes the electric field due to a charge vector Ibi >.

The first problem to consider in this chapter consists of two

*J parallel thin wires in a vacuum as shown in Figure 23. A particular

*I frequency is not chosen, but rather the answer is given as proportional

to w. Using the suggested ldB/10Oft estimate for the loss along with

lengths X.4 and Z3 of 5 and 7 meters respectively, (I -e-T)
- becomes

(11.539). These are the same lengths as the example of Chapter VI.

Also assuming the same circular aperture, a and ae are given by

(1.333 x 10- 6) and (6.666 x 10- 7) respectively.

To determine the eigenvalues and field vectors, we consider the

approximate line charge equivalent configuration of Figure 24. To

compute the P of Equation (121), we may sequentially allow only

charge Q1 and charge Q2 to be nonzero. From each of these line charges,

the electric fields may be determined. We obtain the corresponding

voltages by integrating the electric field from the ground plane to the

wire edges (dotted line about line charge) along both paths L and La1 dL 2.

From the latter, the matrix elements of P are given for thin wires as

4i
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r0 r

T 2a
Ir

d

Aperture

I Figure 23. Cross-section of two wires behind an aperture.

01

.Qi

L I  L2

-Qi

Figure 24. Image charge equivalent of two wires above

a ground plane.
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1' dr 1 dx
11 ~22~ [f~ 'X 21re 0(x+d)'

1ln( 0  (129)
07r r

and d-ro

f 2 P2 F - d2 x +d 2 2
fl 27r2l [ I (rfd) +4a1 2Tre [(x+d) 2 2+x

1 L (2d-r a 0)a +4

ln (130)0__ in [ + :24a 1
Thus

L2 P 2

(P11  P 2 1)1 (131)
2 2

where c is the speed of light (3 xl 108 )

It is easily shown that the elgenvalues of L -lare given by

x=c 2 /(P 1+P1 2  (132)

with the associated eigenvectors given by

b> = > k (133)

If the charges on the two wires are designated as Q1and Q 1then

it is easily shown that the electric field at an aperture symmetrically

located between the wires is given by
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2 2 (- Ql + Q)(134)
Tre (d +a)

Choosing lb b> to have the plus sign we have

-d,92
EY2  Tr d2a2

0

and

to give -2 1T
0 1

eh > = r [ r(d 2+a 2) (135a)

2(.7 -5 2dd[2nHc

h > Tr d 2 +a d135b

If a = d =1cm, this becomes

(A V1 ma 9. 794 x10" k 0[21n0 H xSc1 I+(E y scl

where k is the wave number w4, -e . using the H sc- and E s of (118)
0 0 0xy

with the associated data, this bound is
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JAVImax < 334 k V

or equivalently

JAVI < W(l.ll X 10- 6) V . (137)max

This is approximately five times the level of the parallel plate

problem of Chapter VI with a 2 cm spacing.

To obtain the time-domain upper bound for the vacuum filled line

we note that the factor w/(l -e- °T) of equation (66) must simply be

replaced by

~IsjI~fjI

-2r '
j=l 1-e-2nt

to obtain equation (108). In (108), the loss has been neglected in

comparison to the decay of the short circuit fields as specified by n

for each mode. Using the data of Kajfez in equation (120), the time

domain bound becomes

IAVI < 10.98V. (138)

The second problem of interest is shown in Figure 25 with wire 2

close to wire 1 and much smaller with both radii much less than d. This

problem models a wire at the surface of a wire bundle with an aperture

centered below. If one assumes that the only change from the previous

problem is in the cross-sectional geometry, only the new Xi.

le >, and j h > are needed for equation (66) to be used. Fundamentaly x

to these quantities is the determination of P in (121).

To determine P , a charge set of Q= 0 and Q2 1 1 is first con-

sidered. Due to the proximity of the wires, the model of Figure 26 is
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•2 a

Aperture

Figure 25. Cross-section of thick and thin wires behind

an aperture.

r r-r 1

-------- ----d

S0 0a

a a

Figure 26. Image charge equivalent for only small wire

charged.

I-.-.
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required with the center charges representing the cylindrical images of

Q2 in wire 1 and the left charges balancing the center charges to give

QI = 0. Computing the resulting voltages V1 and V2 between the wires

and the ground plane, the corresponding forms of P and P are

obtained as

rI 2d - r I  r2 + r1
P[ = 4n 1  1 in -1

1 2  L r (2d - rn) + r'2

2 2 1rc 2 214'- in d-r.....

o r1
2 +4a2

andr (2d - 2)2 +4a 2  r22 +(2a-r') 2

2 0r22 +4a 2  
+(2 a-r') 2

2d2

+ 2 1 in

2
where r and r2 are the radii of wires 1 and 2 and r = r1 /2a is the

location of the image charge.

For P21 and P22' no image is needed in wire 1 and the line charges

are simply Q, = 1 and Q2 = 0 to give

11 2d-cr

and F2= 2n 2

and P 1 ln (2d -r2)
2 + 4a2

P 21 = - in 20 2 1P21 o L r2, +4a2
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Dimensions are chosen similar to the previous problem as d = 1cm,

r = 0.5cm, r2 = O.1cm, and a = 0.35cm. The image position r is given

by 0.3571cm. The resulting matrices P and L are given by

1 1.0986 0.7821

2 1.0521 3.3940

and
f 1.1680 -0.2692

-- -0.3621 0.3781

The required eigenvalues and eigenvectors of L-1 are given by

i 1.6939 2 8.0205

and

and b 1 = [ .2870] b > [-0.9275 -
.9572 0.3738

where lb > represents the bulk mode.

The aperture is located half way between the centers of the wires

as shown in Figure 25. The aperture electric field for each mode is

needed for ley > and lhx >. For mode 1, the charge vector is

IQ> = p-1 lbI > = 2 o [0°2583_

To compute Ey at the aperture, Q2 must be modeled by three charges above

the ground plane as was done in the evaluation of P1 2 and P22 ' With this

in mind the general formula for E is
y
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E -1 PQ rlQ2 _ d
y _i Q+Q2+  2a 2

0 a +d

1 d1

Q2 Id2 + (a - r12/2a)2J

to give

Ey = -55.78 V.

Similarly for mode 2,

IQ > - 2 o 0 4-1.1839

0.4772

and

EY2 = 133.35 V.

From equation (128), je > becomes with the (Xi/c) scaley i

l>. [-176.8I l Oe> L
1292.9

Substituting into (66), the upper bound becomes

JAVm < 0.8025 we [21n H sc- I + JE sc- .
max o o x y

For the incident form of Kajfez, this bound is
:-6

JAVjmax < w(2. 4 1 x 10 6) V.

In the time domain this bound becomes

JAVI m 23.84 V.

The substantial increase in these bounds compared to the parallel plate
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problem is seen as a primary result of the five-fold increase in the

L2 norm of ley >. This is a consequence of the closeness of the wires

and aperture and the stronger interaction.

The last problem is depicted in Figure 27. The wire has been

placed at the center of the structure and has a radius equal to b/100.

The wire is labeled as conductor 1 with the upper plane as conductor

2. If Q1 = 0 and Q2 = 1, the wire may be neglected in computing P1 2

and P2 2 to obtain

= d - a
12 E L

0

and
•_ b

P 22 L
0

The computation of P11 and P2 1 Is more complicated since the images of

the wire in the surfaces must be included. The values P11 and P2 1 may

d
be obtained by subtracting -b times P12 or P 22 from the potentials for

a wire between two grounded planes. This removes the effect of charge

on conductor 2. For the grounded planes case with the wire charge

equal to 1 C/m, the potential between planes is zero and the wire

potential is obtained from an infinite sum including the images. If only

the lower image is used, the wire potential is approximated by

(4.595/2 0). The additional images have a minor contribution changing

this value to (4.0466/27c 0). Combining these results for the geometry

given with L 10b, one obtains

P 1 [0.6854 0.05

0 0.05 0.1
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KJ

F L
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4 • b

Aperture

Figure 27. Cross-section of wire between parallel conductors.

A
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and
- 1 1.5142 -0.757

F -0.757 10.378]

The corresponding eigenvalues and eigenvectors are

1.45 10.44
XI1= , ' 2 =

and

b .9963 42> =  .-85

0.0845 0.9964

The aperture is located directly below the wire for maximum

coupling and d is set equal to 1cm. The image summation for E can be
y

computed exactly for this problem to give the electric field at the

aperture as

[E- ..- i 1 '2__
y Q L e 4de Le

Using the lbi > as charge distributions, the primed fields of (128) are

obtained as

E ' - -22.84/ 0

and

Ey = -3.08/0

which give an le > of
y

y -273.3
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>, hx >, and Xi are the only parts of (66) to beSi y Xey

modified from the last problem, the upper bound is obtained as

JAVImax < w(1.197 x 10 - 6 ) V

with an equivalent time domain bound of

A Vmax < 11.84 V.

The primary observation of interest which seems to link these three

problems is that for similar dimensional relationships, the bound takes

on the same order of magnitude. This would suggest the applicability

of canonical problems as bounds for more complex problems.
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CHAPTER VIII

CONCLUSIONS

This report developed a computational technique for upper bounds

on signal levels at terminations of multiconductor transmission lines

(MTL) located behind an aperture-perforated conducting screen. This

was accomplished in several stages. First, the electromagnetic coupling

through small aperture was described using the concept of aperture

polarizabilities. The idea of coupling was then extended to the MTL

excitation behind an aperture where the aperture was represented by the

equivalent current dipole moments. A source of traveling waves was

.4 introduced to replace the aperture and the aperture coupled energy.

These traveling waves transferred the energy from the aperture region

to the terminations. The amount of transferred energy in terms of the

traveling waves was found by introducing a signal flow graph of the

whole system. It was assumed that the aperture had no other signifi-

cant interactions with the MTL as might be described by additional

reflections in the aperture region.

Having computed the amount of energy at the terminations, a trans-

formation was used to represent the traveling waves in terms of the

voltages and currents. The mathematical properties of vector norms and

their associated matrix norms were discussed. The idea of two-norm was

used to formulate upper bounds on the voltagec and currents at the

terminations. At this stage, it was assumed that the terminals were

passive and the losses associated with each mode traveling on the MTL

were of exponential form. Although the radiation and termination losses
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were not explicitly taken into account, it was mentioned that these

losses, if non-negligible, could be considered by modifying the term

due to propagation loss. Further, after some mathematical manipulations,

it was found that the bounds depend primarily on the source and termi-

nation local geometries. Finally, considering the fact that the

maximum voltage between any two lines might be the sum of the indivi-

dual voltages to ground, an additional factor of two was incorporated in

the upper bound. The upper bound on the termination voltages was formu-

lated in the frequency domain. An upperbound on the currents in

frequency domain was simply obtained from this voltage bound.

This idea was extended to the time domain where it was assumed that

the waveforms launched from the sources were non-dispersive (quasi-TEM),

thus reaching the terminations without any distortion. Several

assumptions were made regarding the medium, the termination, and the

modal propagation. It was assumed that the elements of the termination

are all real and constant and the propagation constant of all the modes

are equal to that in a vacuum. The multiple reflection phenomenon was

taken into account and its formulation was simplified by using the pole

expansion of the incident field characterized in the Singularity

Expansion Method (SEX). Using vector and matrix norms, an upper bound

for the voltage and the current was formulated. It was observed that

the upperbounds basically depend on the geometry of the system, the

properties of the external time-varying fields, and the shape of the

aperture.

Having formulated the upperbounds on the signal levels in both time
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and frequency domain, a comprehensive example was presented in order

to elaborate the use of the technique. The parameters and the geometry

were chosen exactly the same as a problem introduced by Kajfez [12] in

order to facilitate the comparison of results. It was found that the

*maximum voltage in Kajfez's example for a moderate mismatched termina-

tion was found by a multiplicative factor of approximately ten. It was

noted that for upperbound calculations under the worst possible con-

ditions a factor of ten was in reasonable agreement with his results.

The reason being that at several stages of computation various types of

inequalities were used that doubled the exact value. Also, the velocity

of all the modes were assumed to be the velocity of light in a vacuum

which were greater than the actual velocity of the modes in their res-

pective media, contributing to the increase of the voltage at the

termination. In addition, a factor of two was used to account for the

potential difference between any two wires and not just to ground. In

the whole, it was observed that final results obtained by using the

developed techniques were in good and reasonable agreement with Kajfez's

results.

Several other problems were also approached directly by the techniques

developed. Two bundles of wires over a ground plane were bound above

by modeling them as two wires over a ground plane. A wire at the surface

of a bundle of wires was modeled by separate thick and thin wires over a

ground plane. A last example considered a wire between parallel plates.

The problems all had comparable dimensions but interestingly had similar

voltage bounds.
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There are several suggestions for future research. It would be

desirable to find signal levels on wires behind composite panels

which couple the external field by a diffusion mechanism. Also of

some importance is the problem of wires passing through an aperture

corresponding to antennas or aircraft control cables. Another area

of research would be large aperture problems such as conformed

antennas or large windows.

'Ai
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Appendix (A)

POLARIZABILITY OF SMALL APERTURES

The diffracted field in the vicinity of an aperture depends on the

excitation field and upon the shape and size of the aperture. The

moments of the equivalent dipoles are related to the components of the

known exciting field through special constants of proportionality

called the aperture electric and magnetic polarizabilities.

Due to the importance of the use of dipole moments, a great deal

of attention has been devoted to determination of the polarizabilities.

Cohn in [Al] and (A2] has experimentally determined the constants for

several shapes, while Van Bladel [A3], has computed by numerical

methods the polarizabilities for a rectangle, diamond, cross, and a

rounded-off rectangle. Table (Al) gives the electric and magnetic

polarizabilities for a circle of radius (R), an ellipse of eccentricity

(e), and a narrow ellipse. The following remarks should be made

concerning the table:

1) a a xx + a yv
m m,XX my

2) eU / - (W/e)
2

3) K and E are the complete elliptic integrals of the first and

second kind, as in [A5].

By the study of the data given by De Meulenaere [A3], when an in-

accuracy in the polarizabilities of 10% can be tolerated, one can

use a normalization factor of [(Aperture area)3/2], and use elliptic

polarizabilities in order to calculate the polarizabilities of the
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rectangle and rounded-off rectangle.

The polarizabilities of other shapes may be obtained by either

measurement or numerical solution of the quasi-static aperture problem.
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Appendix (B)

APERTURE REPRESENTATION BY A PAIR

OF CURRENT DIPOLES

Consider Figure (Bl) where an aperture-perforated screen is V

shown (B]. In order to evaluate the scattered field in the interior

region, one only needs to know about the tangential electric field

t over the aperture. It is convenient to close the aperture with a

metalic lid and place a magnetic surface current density JS over it

given by

js " x n(Bl)

where n is the normal vector as shown in Figure (B2). The vector E is

the total aperture field typically obtained by solution of a quasi-

static integral equation [B2].

Now, one can invoke the reciprocity theorem to compute the

scattered field at any point in the interior region due to surface

magnetic current. For the purpose of this discussion, the reciprocity

theorem as introduced in (B3] will be used. As shown in Figure (B3),

the scattered field (r') at a point (7') is to be computed with

respect to the origin which is taken at the center of the closed

aperture region. By introducing a unit magnitude electric dipole P

at the point ()') [BI], as shown in Figure (B3), one can write the

reciprocity theorem as

t~'.a j V Ie - b m ) dV (B2)

V

where is an electric current dipole given by

'a6 (33)
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Aperture

Inside Region Et=O , O

F/7/7// /// /////

Outside Region E t 0
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Figure (3l). Aperture-perforated screen [8].

Vn

E xi J 4 Inside Region
t s

Outside Region

Figure (B2). Aperture replaced by im [8].s

Figure (B3). Evaluation of scattered field [8].
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and ap. is a unit vector characterizing the orientation of the testing

dipole e. The vectors Eb and are the fields produced by the source

f, evaluated at the surface of the closed aperture, and J and 1 aree 3

volume electric and magnetic current densities which are the sources

of the field scattered by the aperture. In the case of this discussion,

is equal to zero and equation (B2) for the surface current J becomes

S

From Maxwell's equations, one can write

7x~b = jwe Eb .  (BS)

The vector Hb can be expanded in Taylor's series as

Hb r) + r-(7H) 10+ .. (B6)

where the higher order terms are assumed to be negligible. One can

write r . (7H)I- as
0

r. (7H)TI - ('7)l- . - rx (VxH)I-. (B7)

The term (7H))0 r gives rise to a quadrupolewhich is neglected (B2].

Substituting equation (B5) in equation (B7), one may rewrite equation

(B6) as

b~) () r X EjWCi E b ()] . (B8)

If equation (B8) is substituted in equation (B4), one obtains

EWr) -a. ~Hb 0) wr KE b01 S dS

S (B9)

One may define C and C as electrc and magnetic dipole current
e b

moments respectively by
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f S~m

C e j f x i S dS (BlO)

S

Cm  _7S dS .(Bll)

S

With these definitions, equation (B9) can be written as

By comparison of equations (B2) and (B12), one may write equivalent

currents as

J S d(y) J S 5(r) (B13)
m m

Je 6(y) Je C 6(r) (B14)
ee e

where d(i) is the three dimensional Dirac delta distribution. The

equivalent dipole current moment representation of an aperture is

shown in Figure (B4).
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Appendix (C)

DIRAC"S NOTATION OF MATRICES

The following material is an introduction to matrix algebra using

Dirac's Notation which was introduced in Quantum theory by P.A.M. Dirac.

The presented material is a summary of B. Friedman [Cl], S. Gasiorowicz

[C2], and A. Messiah [C3].

In Dirac's Notation, an N-dimensional column vector is denoted by

Ux

xl

Ix> 2

x3

XNI

When matrix A, anNxN matrix operates on vector lx>, the resulting

operation is another column vector IV>. By elementary properties of

matrix multiplication, the kth element of the vector IV>is computed as

N
Vk - jA.~Jxj (Cl)

The complex conjugate transpose of a column vector fx> is a row

vector denoted by < x I whose elements are the complex conjugate

elements of !x> ordered as

< xl (x1 * X*... X. (C2)

where (*) means complex conjugate.

101
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The (t) notation is uaed for complex conjugate transpose of A

given by

a 1

At - lN2

a a.

Using matrix properties for conjugation and multiplication the

following product is obtained:

< M (A B (x> >+ A (0)

where <MN is a Nxl row vector and B_ and A are both NxN matrices.

One of the most important types of matrices is the Hermitian

matrix which is equal to its own complex conjugate transpose, i.e.,

A' - A

A Hermitian matrix has the following properties:

2
1) Instead of (N ) distinct elements, it only has N(N+l) distinct

elements.

2) The elements on the main diagonal are real.

3) The elements which are located symmetrically across the main

diagonal are complex conjugate of each other.

Multiplication of a row vector with a compatible column vector

results in a complex number as
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It may be observed that <xly > :<yl: Zh If <Vj <XIA', then

I~Sometimes it may happen that the order of multiplication in (C4) is

<*1 interchanged, then the result is a NxN square matrix

yl

*' * * (0S>< x1 Y2 x .2 3 ... x.y (C)

" YN
*>*

One of the benefits of representing matrices in Dirac's Notation is

that by observing the position of symbols, one can readily determine the

format of the resulting operation. For example, assuming that B is a

NILN

scalar, Ix > and ly > are vectors, and A is a square matrix, then

< xjAfy > and B < ylx > are scalars, Aix > is a vector, and jx >< yI

is a square matrix.



Appendix (D)

MULTICONDUCTOR-LINE FOMULATION

The computation of voltages and currents on a multiconductor

transmission line (MTL) in terms of eigenvectors have been analyzed by

Amemiya [Dl] and Marx [D2]. This approach has been used for both

transient and steady-state waveforms. D. Kajfez [D3] has extended the

eigenvector treatment by using a simultaneous diagonalization of two

matrices. This section presents the main ideas of method of diagonal-

ization by using only one composite matrix instead of two separate

matrices.

Consider the N-conductor transmission line with a conducting

ground plane as shown in Figure (Dl). The reference direction has

been chosen such that real, positive values of Vi and Ii represent

power flow in the positive z direction.

References (DI], [D2], and [D4] derive the following two formulas

for a lossless MTL in sinusoidal steady-state analysis with isotropic,

nonmagnetic dielectrics:

d IV > _ _j-Lj I> (Dl)
dz

d > -I>_j I V> (D2)

The matrix L is called the induction matrix and the matrix K is the

induction coefficient matrix.

There are two types of propagation on these lines. If the
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y

x

A + 'N

z

Figure (DI). Voltage and currents on a MTL with

a ground plane in the (x-z) plane.
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dielectric is homogeneous, transverse electromagnetic CTEM) modes

propagate. If the dielectric is inhomogeneous, hybrid electromagnetic

CHEM) modes propagate [D5]. In HEM mode both the electric and magnetic

vectors have a longitudinal component. At low frequencies, the longi-

tudinal component is small and may be neglected, giving rise to quasi-

TEM modes.

Using the analysis presented by Friedman [D6], the first step is-

to decouple equations (Dl) and CD2) by taking derivatives of both sides

and substituting in the same equations to obtain

d2
-- 2 I > - -W 2KL I V> (D3)

d 2  2

dz 21 WK >(4

As L and K represent stored energy of a passive network, they are both

positive definite and thus qualify for the method of Friedman [D6].

This method of solution for IV> and I I> consists first of obtaining a

set of orthonormal eigenvectors I i > and corresponding eigenvalues

a- 12 ) for the matrix B - 2 LK. Since L and K are positive definite,

LK is also positive definite and the Bi 2s are all positive. The

eigenvalue problem is given by

The eigenvalues may be obtained from

det[-w 2K + 6I2 .] - 0 (D6)
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where

<Cil;> - ij CD7)

and 6 is the Kroneker delta.

One may now form a square matrix G whose columns are the >

G-[ k >, 12>,..,, iN>J (D8)

This matrix may be used to diagonalize B as

A = G BG -Diag[- 1 .... .2 (D9)

where

G Gt  I. (DO)

The matrix G is an orthogonal real matrix, (i) denotes the transpose of

the matrix, and I is the identity matrix.

The corresponding eigenvalue problem of the decomposed matrix A

becomes
d2
d A Y> (Dll)
dz >

where

IY > - G IV > (D12)

Because of the fact that A is real and diagonal, equation (DlI) can be

decomposed into a second order differential equation for each mode as

d2  2 (D13)

dzs

The solution is of the exponential form
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+i " e-JBiz j O-e J iz( I )
+ y (D14)

where - and v i is the velocity of the ith mode. This velocityv i

relation can be shown by the usual method of multiplying (D14) with

e+JiWt and then taking the real part in order to obtain the rate of

change of the phase. In equation 0)14), y+ and yi refer to the

amplitudes of positive and negative travelling waves in the z direction.

IY > can now be written as (D15)

N
lY> y ~i ui > (D15)

where Jui> denotes a column vector having all zero elements except for

the ith element which is unity.

Equation (Dl2) can now be used to find IV> as

N
IV > "- yii y. > (D16)

Similarly, II> can be obtained from equations (Dl) and (D16) as

N -l dyl ,-1
hl>- I q ) l D7

i-i

The above equation can also be written as

N i J jiz >  (D18)
i-l

From these expressions for voltage and current, the total power

carried on a MTL is the average real power defined by
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P Re < VI1> (D19)

Substituting equations CD18) and (D16) into (D19), P becomes

P.Re{ C i<ciL (D20)

where (*) denotes the complex conjugate. If y-is equal to zero then

the power travelling in positive z direction is

+ N.

It is useful to relate the positive traveling power (P )to a

power wave (ai) such thatp

Z Jaji (D22)

assuming that the travelling modes are orthogonal. In this case, a.i is

given by

- i - X< (D23)
-ii

V -1

where the X, s are the eigenvalues of the matrix L .Generalizing, the

total power can be written as

N
P J ailj2 +bil 2I (D24)

where the bi s are defined by

.........
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b- /< Ixikq> (D25)
vi

The voltage vector IV> may be written in terms of the voltage

eigenvectors 0i > , normalized to unity power as

N
IV > - (a1-Joiz + b eJ~iz)Ii > (D26)i-ii

where

hi > I ki> (D27)

/<

4 Similarly, I~i> is the corresponding normalized current eigenvector

giving rise to

II > N i (aie-j bie+ J  i  
>  (D28)

i-i

where 1 L-1 > (D29)
i~ > L -D9

vi

It can be easily shown that

< i[ j > ij(D30)

In order to transform from the power wave formulation back to the

desired voltages and currents, one defines two matrices whose columns

are the voltage and current eigenvectors given by

x _V - ( l > .. . > )(D31)
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Z ( Hi>,..., IN>) (D32)

From equation (P30), it is easily shown that

_ -I (D33)

and

4.
-- " I. (D34)

In the bounding process of Chapter IV, an inhomogeneous medium

would be replaced by a homogeneous medium with a dielectric constant

less than or equal to the minimum dielectric constant of the inhomo-

geneous medium. This. typically leads to the use of a vacuum model

with the (2 . replaced by (S - ), where c is the speed of

light in vacuum. In this instance, equation (D13) becomes

d2  . 2
d- Yi Yi (D35)

dz
2

The corresponding J~> and I i> would also change to account for the

homogeneity.

.4



APPENDL (E)

TRAVELING WAVE FORMULATION

The voltages and currents on a MTL as described in Appendix (D)

are

v(zj>- a i • ai + bi e s (El)

Nis z +isj(2
1l(z)> - a e±ibe z(2

ii

where 1i > and 1Pi > are normalized voltage and current eigenvectors,

ai and bi represent the amplitudes of the ith mode waves traveling in

the positive and negative (z) directions respectively, and (Si) is the

propogation constant of the ith mode.

Using M. and MT matrices as introduced in Appendix (D), equations

(El) and (E2) can be written in more compact form as

Iv(z)> -M [F*(z)i[a> + F(z)lb>] (E3)

[IF> - mI [F*(z)la> - F(z)ib' l  (E4)

where

F(z) - diag le i, e N (E5)

Equations (E3) and (E4) can be written as

F (z)la> - - + IzIz)>1 (E6)

'( b> - rI!V(z)> - MV!I(z)>1 (E7)
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In the above formulas, (a.) is the complex amplitude of ith

mode such that the power contained in the positive (z) direction is

+ l' (E8)

Hence, the entire power transmitted along the positive (z) direction

is

+ 1
PTotal 2 <ala> (E9)

Similarly, the total power contained in the negative (z) direction is

1
Total 2 <bib> (ElO)

where it is assumed that there is no transfer of power among different

modes.

It is convenient to introduce a composite MTL, as shown in

Figure (El), with Z 4 and Z 3 impedance matrices respectively located at

z = Y4 and z - with respect to the origin where the source is

coupled to the MTL [El]. The amplitudes of the ith mode introduced by

the source are asi and bsi. The total amplitude ai of the ith mode

consists of asi due to the source and the reflected bsi coming from

the left hand termination at z -3" From equations (E6) and (E7)

the following relations can be obtained:

a(Z4)> 1 t! V(Z4)> + MVII(Z)7 (Ell)

b(Z )> Iva )> V (E12)
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z zO

Figure (El). Terminated MTL with a source located at z-0 [Ell.
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By Ohm's law, one obtains

>- Z4 I(Z 4 )> (E13)

Combining equations (Ell), (E12), and (E13), one obtains

Ib( 4 )> = 4 a( 4 )> (E14)

where r4 is called the reflection matrix given by

4 -- 4M + (E15)

The matrix r4 may contain non-zero off-diagonal elements creating

mode coupling. Similarly, at z -- 3, one can obtain

3a(-Z3 ) > - lb(-Z 3)> (E16)

where

£3- KI3M - 1 ~ I )- (E17)
r_3 -(M_ z_1 _ 1)

One can also look at the problem in time-domain assuming that the

quasi-TEM waves are non-dispersive, and each mode is launched and

transmitted without a distortion. Assuming that the starting ampli-

tude at (z-0) is denoted by ai0 (t), then at z - 4 the amplitude

becomes

ai 4 (t) aio - (E18)

where v£ is the velocity of the ith mode. If the load network consists

of passive elements such as capacitor and inductors, the shape of the

reflected waves will be distorted as compared to the incident waves.

-~~~~~. - ----



APPENDIX (F)

COUPLING COEFFICIENTS FOR TRANSVERSE ELECTROMAGNETIC (TEM)
MODE EXCITED BY LOCALIZED CURRENT SOURCES

Figure (Fl) represents an electric current source J located inside

a parallel plate waveguide which produces outgoing waves that carry

energy to ports Z and Z2. The total electric and magnetic fields

traveling in the positive z direction have been derived by Collin (F1]

as

as

+ c (e + )e n (Fl)
n n nz

4nz -je z
c + (n + en (F2)n n n

where n stands for the nth outward propagating mode, c is the waven

amplitude, and n is the nth mode propagation constant. The vectors

n n

nth quasi-TEM mode and are real functions normalized to unit power as

r

e m xh n . ds -86m (F3)
s

where 6 is the Kroneker delta and s is the cross section of the wave-

guide. Collin has used the reciprocity theorem for Figure (Fl) and

has obtained

+ -lB jz
c n  -- e n-e .Je dV (F4)

V

where the volume of integration encloses the current 7.

116



iz

F117

-I

E' H_' iEr Ho

I regio

Sregion

Eincident

Figure (F2). Incident, radiated, and guided waves for the open
region with aperture-perforated screen [ei].
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The above method can be used in aperture problems where a wire is

located behind a conducting screen as shown in Figures (F2). The

incident field from exterior region produces both a radiation field

and a guided transverse electromagnetic wave (TEM) in the interior

region. The radiation field (Ea) radiates into a free space and
rad

the TEM wave propagates along the wire. In order to use the method

,4 of Collin, one must assume that the radiated field is negligible.

Kaj fez [F2] has attempted to justify this assumption in his couplingI

formulation [F2]. Davis (F3] has also compared the radiated and the

transmitted TEN energy for such problems to justify the assumption

that only TEM modes need to be considered.

*i Shown in Figure (F3) are the electric and magnetic dipoles above

a closed aperture which replace the aperture. The discussion of the

dipole equivalence in aperture problems is formulated in Appendix (B).

The situation in Figure (F3) is entirely the same as Figure (Fl) with

the two dipoles J and J e being the effective sources. Now, ones 5

can apply the reciprocity method of Collin to obtain

c n hJ (n Js en J s ) ds (F5)

Aperture

where the integration is over the surface of the aperture.

The computation is simplified if the source currents are assumed

to take a Dirac delta distribution form of S(x) and 5(z). For such a

distribution equations (Bll) and (B12) become
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Figure (F3). Aperture representation by electric
and magnetic dipoles [Fl].
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- c 6(x- x0) S(z - z) (F6)
S m 0

e Ce 6(x- x) (z- zo ) (F7)

Substitution of equations (F6) and (F7) in (F5) gives

+ 1 +j nZOC
cn h hn(XO, 0) cx- e(X 0 , 0) c(8)

Similarly, one can show that

- i -jan0 - e (X 0) (F9)
n 2 L emx - ey

where the minus on hxn(N, 0) and in the exponent are due to the

reference direction for propagation in the (-z) direction. Equations

(F8) and (F9) completely define the source coupling to a wire behind

an aperture.
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